Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance.

Identifieur interne : 000435 ( Main/Exploration ); précédent : 000434; suivant : 000436

Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance.

Auteurs : Maxime Durand [France] ; David Cohen [France] ; Nathalie Aubry [France] ; Cyril Buré [France] ; Ivana Tomášková [République tchèque] ; Irène Hummel [France] ; Oliver Brendel [France] ; Didier Le Thiec [France]

Source :

RBID : pubmed:31423592

Abstract

Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+ -ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+ -vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.

DOI: 10.1111/pce.13644
PubMed: 31423592


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance.</title>
<author>
<name sortKey="Durand, Maxime" sort="Durand, Maxime" uniqKey="Durand M" first="Maxime" last="Durand">Maxime Durand</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Aubry, Nathalie" sort="Aubry, Nathalie" uniqKey="Aubry N" first="Nathalie" last="Aubry">Nathalie Aubry</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bure, Cyril" sort="Bure, Cyril" uniqKey="Bure C" first="Cyril" last="Buré">Cyril Buré</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tomaskova, Ivana" sort="Tomaskova, Ivana" uniqKey="Tomaskova I" first="Ivana" last="Tomášková">Ivana Tomášková</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00</wicri:regionArea>
<wicri:noRegion>165 00</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hummel, Irene" sort="Hummel, Irene" uniqKey="Hummel I" first="Irène" last="Hummel">Irène Hummel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brendel, Oliver" sort="Brendel, Oliver" uniqKey="Brendel O" first="Oliver" last="Brendel">Oliver Brendel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31423592</idno>
<idno type="pmid">31423592</idno>
<idno type="doi">10.1111/pce.13644</idno>
<idno type="wicri:Area/Main/Corpus">000749</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000749</idno>
<idno type="wicri:Area/Main/Curation">000749</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000749</idno>
<idno type="wicri:Area/Main/Exploration">000749</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance.</title>
<author>
<name sortKey="Durand, Maxime" sort="Durand, Maxime" uniqKey="Durand M" first="Maxime" last="Durand">Maxime Durand</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Aubry, Nathalie" sort="Aubry, Nathalie" uniqKey="Aubry N" first="Nathalie" last="Aubry">Nathalie Aubry</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bure, Cyril" sort="Bure, Cyril" uniqKey="Bure C" first="Cyril" last="Buré">Cyril Buré</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tomaskova, Ivana" sort="Tomaskova, Ivana" uniqKey="Tomaskova I" first="Ivana" last="Tomášková">Ivana Tomášková</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00</wicri:regionArea>
<wicri:noRegion>165 00</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hummel, Irene" sort="Hummel, Irene" uniqKey="Hummel I" first="Irène" last="Hummel">Irène Hummel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brendel, Oliver" sort="Brendel, Oliver" uniqKey="Brendel O" first="Oliver" last="Brendel">Oliver Brendel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
<affiliation wicri:level="4">
<nlm:affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (g
<sub>s</sub>
) can be ascribed to changes in guard cells functioning in amphistomateous leaves. g
<sub>s</sub>
was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where g
<sub>s</sub>
was at the highest. In contrast, genes encoding H
<sup>+</sup>
-ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca
<sup>2+</sup>
-vacuolar antiporters, K
<sup>+</sup>
channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31423592</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance.</ArticleTitle>
<Pagination>
<MedlinePgn>87-102</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13644</ELocationID>
<Abstract>
<AbstractText>Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (g
<sub>s</sub>
) can be ascribed to changes in guard cells functioning in amphistomateous leaves. g
<sub>s</sub>
was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where g
<sub>s</sub>
was at the highest. In contrast, genes encoding H
<sup>+</sup>
-ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca
<sup>2+</sup>
-vacuolar antiporters, K
<sup>+</sup>
channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Durand</LastName>
<ForeName>Maxime</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aubry</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buré</LastName>
<ForeName>Cyril</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tomášková</LastName>
<ForeName>Ivana</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hummel</LastName>
<ForeName>Irène</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brendel</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Le Thiec</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-4204-551X</Identifier>
<AffiliationInfo>
<Affiliation>Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus</Keyword>
<Keyword MajorTopicYN="Y">abaxial and adaxial surfaces</Keyword>
<Keyword MajorTopicYN="Y">droughts</Keyword>
<Keyword MajorTopicYN="Y">elements</Keyword>
<Keyword MajorTopicYN="Y">gene expression</Keyword>
<Keyword MajorTopicYN="Y">plant stomata</Keyword>
<Keyword MajorTopicYN="Y">stomatal conductance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31423592</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13644</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Acharya, B. R., & Assmann, S. M. (2009). Hormone interactions in stomatal function. Plant Molecular Biology, 69(4), 451-462. https://doi.org/10.1007/s11103-008-9427-0</Citation>
</Reference>
<Reference>
<Citation>Agurla, S., & Raghavendra, A. S. (2016). Convergence and divergence of signaling events in guard cells during stomatal closure by plant hormones or microbial elicitors. Frontiers in Plant Science, 7(1332). https://doi.org/10.3389/fpls.2016.01332</Citation>
</Reference>
<Reference>
<Citation>Almeida-Rodriguez, A. M., Cooke, J. E. K., Yeh, F., & Zwiazek, J. J. (2010). Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii × balsamifera clones with different drought resistance strategies. Physiologia Plantarum, 140(4), 321-333. https://doi.org/10.1111/j.1399-3054.2010.01405.x</Citation>
</Reference>
<Reference>
<Citation>Amodeo, G., Talbott, L. D., & Zeiger, E. (1996). Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation. Plant and Cell Physiology, 37(5), 575-579. https://doi.org/10.1093/oxfordjournals.pcp.a028983</Citation>
</Reference>
<Reference>
<Citation>Amsellem, J., Nicaise, G., Blaineau, S., Quintana, C., Escaig, J., Roinel, N., … Vicario, E. (1983). Microanalyse × en biologie. Société Française de Microscopie Electronique, Paris.</Citation>
</Reference>
<Reference>
<Citation>Assmann, S. M. (1993). Signal transduction in guard cells. Annual Review of Cell Biology, 9(1), 345-375. https://doi.org/10.1146/annurev.cb.09.110193.002021</Citation>
</Reference>
<Reference>
<Citation>Barragan, V., Leidi, E. O., Andres, Z., Rubio, L., De Luca, A., Fernandez, J. A., … Pardo, J. M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 24(3), 1127-1142. https://doi.org/10.1105/tpc.111.095273</Citation>
</Reference>
<Reference>
<Citation>Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K. A. S., … Hedrich, R. (2013). The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Current Biology, 23(1), 53-57. https://doi.org/10.1016/j.cub.2012.11.022</Citation>
</Reference>
<Reference>
<Citation>Berry, J. A., Beerling, D. J., & Franks, P. J. (2010). Stomata: Key players in the earth system, past and present. Current Opinion in Plant Biology, 13(3), 232-239. https://doi.org/10.1016/j.pbi.2010.04.013</Citation>
</Reference>
<Reference>
<Citation>Bigot, S., Buges, J., Gilly, L., Jacques, C., Boulch, P. L., Berger, M., … Couée, I. (2018). Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change. Global Change Biology, 24(12), 5573-5589. https://doi.org/10.1111/gcb.14433</Citation>
</Reference>
<Reference>
<Citation>Bizet, F., Bogeat-Triboulot, M. B., Montpied, P., Christophe, A., Ningre, N., Cohen, D., & Hummel, I. (2015). Phenotypic plasticity toward water regime: Response of leaf growth and underlying candidate genes in Populus. Physiologia Plantarum, 154(1), 39-53. https://doi.org/10.1111/ppl.12271</Citation>
</Reference>
<Reference>
<Citation>Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444-1449. https://doi.org/10.1126/science.1155121</Citation>
</Reference>
<Reference>
<Citation>Brodribb, T. J., & Cochard, H. (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149(1), 575-584. https://doi.org/10.1104/pp.108.129783</Citation>
</Reference>
<Reference>
<Citation>Brunner, A. M., Yakovlev, I. A., & Strauss, S. H. (2004). Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology, 4(1), 14. https://doi.org/10.1186/1471-2229-4-14</Citation>
</Reference>
<Reference>
<Citation>Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168(2), 275-291. https://doi.org/10.1111/j.1469-8137.2005.01543.x</Citation>
</Reference>
<Reference>
<Citation>Buckley, T. N., John, G. P., Scoffoni, C., & Sack, L. (2015). How does leaf anatomy influence water transport outside the xylem? Plant Physiology, 168(4), 1616-1635. https://doi.org/10.1104/pp.15.00731</Citation>
</Reference>
<Reference>
<Citation>Byrt, C. S., Zhao, M., Kourghi, M., Bose, J., Henderson, S. W., Qiu, J., … Tyerman, S. (2017). Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH. Plant, Cell & Environment, 40(6), 802-815. https://doi.org/10.1111/pce.12832</Citation>
</Reference>
<Reference>
<Citation>Ceulemans, R., Hinckley, T. M., & Impens, I. (1989). Stomatal response of hybrid poplar to incident light, sudden darkening and leaf excision. Physiologia Plantarum, 75(2), 174-182. https://doi.org/10.1111/j.1399-3054.1989.tb06165.x</Citation>
</Reference>
<Reference>
<Citation>Chaumont, F., & Tyerman, S. D. (2014). Aquaporins: Highly regulated channels controlling plant water relations. Plant Physiology, 164(4), 1600-1618. https://doi.org/10.1104/pp.113.233791</Citation>
</Reference>
<Reference>
<Citation>Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology, 30(3), 239-264. https://doi.org/10.1071/FP02076</Citation>
</Reference>
<Reference>
<Citation>Chen, S. L., Wang, S. S., Altman, A., & Huttermann, A. (1997). Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiology, 17(12), 797-803. https://doi.org/10.1093/treephys/17.12.797</Citation>
</Reference>
<Reference>
<Citation>Chen, Z.-H., Hills, A., Bätz, U., Amtmann, A., Lew, V. L., & Blatt, M. R. (2012). Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiology, 159(3), 1235-1251. https://doi.org/10.1104/pp.112.197350</Citation>
</Reference>
<Reference>
<Citation>Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., … Valentini, R. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529-533. https://doi.org/10.1038/nature03972</Citation>
</Reference>
<Reference>
<Citation>Clarkson, D. T., & Hanson, J. B. (1980). The mineral nutrition of higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 31, 239-298. https://doi.org/10.1146/annurev.pp.31.060180.001323</Citation>
</Reference>
<Reference>
<Citation>Clum, H. H. (1926). The effect of transpiration and environmental factors on leaf temperatures II. Light intensity and the relation of transpiration to the thermal death point. American Journal of Botany, 13(4), 217-230. https://doi.org/10.1002/j.1537-2197.1926.tb05879.x</Citation>
</Reference>
<Reference>
<Citation>Cohen, D., Bogeat-Triboulot, M. B., Tisserant, E., Balzergue, S., Martin-Magniette, M. L., Lelandais, G., … Hummel, I. (2010). Comparative transcriptomics of drought responses in Populus: A meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics, 11, 21.</Citation>
</Reference>
<Reference>
<Citation>Cohen, D., Bogeat-Triboulot, M. B., Vialet-Chabrand, S., Merret, R., Courty, P. E., Moretti, S., … Hummel, I. (2013). Developmental and environmental regulation of aquaporin gene expression across Populus species: Divergence or redundancy? PLoS ONE, 8(2), 12.</Citation>
</Reference>
<Reference>
<Citation>Coopman, R. E., Jara, J. C., Bravo, L. A., Sáez, K. L., Mella, G. R., & Escobar, R. (2008). Changes in morpho-physiological attributes of Eucalyptus globulus plants in response to different drought hardening treatments. Electronic Journal of Biotechnology, 11(2), 30-39.</Citation>
</Reference>
<Reference>
<Citation>Cowan, I. R., & Farquhar, G. D. (1977). Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology, 31, 471-505.</Citation>
</Reference>
<Reference>
<Citation>Dai, A. (2012). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52.</Citation>
</Reference>
<Reference>
<Citation>Damsteegt, E. L., McHugh, N., & Lokman, P. M. (2016). Storage by lyophilization-Resulting RNA quality is tissue dependent. Analytical Biochemistry, 511, 92-96.</Citation>
</Reference>
<Reference>
<Citation>Davies, W. J., & Zhang, J. H. (1991). Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 55-76. https://doi.org/10.1146/annurev.pp.42.060191.000415</Citation>
</Reference>
<Reference>
<Citation>de Dios, V. R. (2017). Circadian regulation and diurnal variation in gas exchange. Plant Physiology, 175(1), 3-4. https://doi.org/10.1104/pp.17.00984</Citation>
</Reference>
<Reference>
<Citation>Dodd, I. C. (2005). Root-to-shoot signalling: Assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant and Soil, 274(1-2), 251-270. https://doi.org/10.1007/s11104-004-0966-0</Citation>
</Reference>
<Reference>
<Citation>Dumont, J., Cohen, D., Gerard, J., Jolivet, Y., Dizengremel, P., & Le Thiec, D. (2014). Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes. Plant, Cell and Environment, 37(9), 2064-2076. https://doi.org/10.1111/pce.12293</Citation>
</Reference>
<Reference>
<Citation>Durand, M., Brendel, O., Buré, C., & Le Thiec, D. (2019). Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: Impact on the whole plant transpiration efficiency of poplar genotypes. New Phytologist, 222, 1789-1802. https://doi.org/10.1111/nph.15710</Citation>
</Reference>
<Reference>
<Citation>Ewert, M. S., Jr, W. H. O., Zhang, S., Aghoram, K., & Riddle, K. A. (2000). Accumulation of an apoplastic solute in the guard-cell wall is sufficient to exert a significant effect on transpiration in Vicia faba leaflets. Plant, Cell & Environment, 23(2), 195-203. https://doi.org/10.1046/j.1365-3040.2000.00539.x</Citation>
</Reference>
<Reference>
<Citation>García-Baldenegro, C. V., Vargas-Arispuro, I., Islas-Osuna, M., Rivera-Domínguez, M., Aispuro-Hernández, E., & Martínez-Téllez, M. Á. (2015). Total RNA quality of lyophilized and cryopreserved dormant grapevine buds. Electronic Journal of Biotechnology, 18(2), 134-137. https://doi.org/10.1016/j.ejbt.2015.01.002</Citation>
</Reference>
<Reference>
<Citation>Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., … Hedrich, R. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 8023-8028. https://doi.org/10.1073/pnas.0912030107</Citation>
</Reference>
<Reference>
<Citation>Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. https://doi.org/10.1073/pnas.0912021106</Citation>
</Reference>
<Reference>
<Citation>Giovannelli, A., Deslauriers, A., Fragnelli, G., Scaletti, L., Castro, G., Rossi, S., & Crivellaro, A. (2007). Evaluation of drought response of two poplar clones (Populus×canadensis Mönch ‘I-214’ and P. deltoides Marsh. ‘Dvina’) through high resolution analysis of stem growth. Journal of Experimental Botany, 58(10), 2673-2683. https://doi.org/10.1093/jxb/erm117</Citation>
</Reference>
<Reference>
<Citation>Grabov, A., & Blatt, M. R. (1999). A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiology, 119(1), 277-288. https://doi.org/10.1104/pp.119.1.277</Citation>
</Reference>
<Reference>
<Citation>Granot, D., & Kelly, G. (2019). Evolution of guard-cell theories: The story of sugars. Trends in Plant Science, 24(6), 507-518. https://doi.org/10.1016/j.tplants.2019.02.009</Citation>
</Reference>
<Reference>
<Citation>Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., & Maurel, C. (2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. The Plant Cell, 27(7), 1945-1954. https://doi.org/10.1105/tpc.15.00421</Citation>
</Reference>
<Reference>
<Citation>Guo, X. Y., Zhang, X. S., & Huang, Z. Y. (2010). Drought tolerance in three hybrid poplar clones submitted to different watering regimes. Journal of Plant Ecology, 3(2), 79-87. https://doi.org/10.1093/jpe/rtq007</Citation>
</Reference>
<Reference>
<Citation>Gutierrez, L., Mauriat, M., Guenin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., … Van Wuytswinkel, O. (2008). The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6(6), 609-618. https://doi.org/10.1111/j.1467-7652.2008.00346.x</Citation>
</Reference>
<Reference>
<Citation>Hachez, C., Heinen, R. B., Draye, X., & Chaumont, F. (2008). The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation. Plant Molecular Biology, 68(4-5), 337-353. https://doi.org/10.1007/s11103-008-9373-x</Citation>
</Reference>
<Reference>
<Citation>Hassidim, M., Dakhiya, Y., Turjeman, A., Hussien, D., Shor, E., Anidjar, A., … Green, R. M. (2017). CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the circadian control of stomatal aperture. Plant Physiology, 175(4), 1864-1877. https://doi.org/10.1104/pp.17.01214</Citation>
</Reference>
<Reference>
<Citation>Heinen, R. B., Bienert, G. P., Cohen, D., Chevalier, A. S., Uehlein, N., Hachez, C., … Chaumont, F. (2014). Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays. Plant Molecular Biology, 86(3), 335-350. https://doi.org/10.1007/s11103-014-0232-7</Citation>
</Reference>
<Reference>
<Citation>Henzler, T., Waterhouse, R. N., Smyth, A. J., Carvajal, M., Cooke, D. T., Schaffner, A. R., … Clarkson, D. T. (1999). Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta, 210(1), 50-60. https://doi.org/10.1007/s004250050653</Citation>
</Reference>
<Reference>
<Citation>Huang, A. X., She, X. P., Zhang, Y. Y., & Zhao, J. L. (2013). Cytosolic acidification precedes nitric oxide removal during inhibition of ABA-induced stomatal closure by fusicoccin. Russian Journal of Plant Physiology, 60(1), 60-68. https://doi.org/10.1134/S1021443712060076</Citation>
</Reference>
<Reference>
<Citation>Huang, D., Wu, W., Abrams, S. R., & Cutler, A. J. (2008). The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany, 59(11), 2991-3007. https://doi.org/10.1093/jxb/ern155</Citation>
</Reference>
<Reference>
<Citation>Intergovernmental Panel on Climate Change (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: Cambridge University Press. https://doi.org/10.1017/CBO9781107415416</Citation>
</Reference>
<Reference>
<Citation>Irving, H. R., Gehring, C. A., & Parish, R. W. (1992). Changes in cytosolic pH and calcium of guard-cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1790-1794. https://doi.org/10.1073/pnas.89.5.1790</Citation>
</Reference>
<Reference>
<Citation>Jaiprakash, M. R., Pillai, B., Venkatesh, P., Subramanian, N., Sinkar, V. P., & Sadhale, P. P. (2003). RNA isolation from high-phenolic freeze-dried tea (Camellia sinensis) leaves. Plant Molecular Biology Reporter, 21(4), 465-466. https://doi.org/10.1007/BF02772599</Citation>
</Reference>
<Reference>
<Citation>Jansson, S., & Douglas, C. J. (2007). Populus: A model system for plant biology. Annual Review of Plant Biology, 58, 435-458. https://doi.org/10.1146/annurev.arplant.58.032806.103956</Citation>
</Reference>
<Reference>
<Citation>Jezek, M., & Blatt, M. R. (2017). The membrane transport system of the guard cell and its integration for stomatal dynamics. Plant Physiology, 174(2), 487-519. https://doi.org/10.1104/pp.16.01949</Citation>
</Reference>
<Reference>
<Citation>Kanemasu, E. T., & Tanner, C. B. (1969). Stomatal diffusion resistance of snap beans I. Influence of leaf-water potential. Plant Physiology, 44(11), 1547-1552. https://doi.org/10.1104/pp.44.11.1547</Citation>
</Reference>
<Reference>
<Citation>Kang, Y. U. N., Outlaw, W. H., Andersen, P. C., & Fiore, G. B. (2007). Guard-cell apoplastic sucrose concentration ? a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant, Cell & Environment, 30(5), 551-558. https://doi.org/10.1111/j.1365-3040.2007.01635.x</Citation>
</Reference>
<Reference>
<Citation>Kassam, A. H. (1973). Influence of light and water deficit upon diffusive resistance of leaves of Vicia faba L. New Phytologist, 72(3), 557-570. https://doi.org/10.1111/j.1469-8137.1973.tb04407.x</Citation>
</Reference>
<Reference>
<Citation>Kelly, G., Moshelion, M., David-Schwartz, R., Halperin, O., Wallach, R., Attia, Z., … Granot, D. (2013). Hexokinase mediates stomatal closure. The Plant Journal, 75(6), 977-988. https://doi.org/10.1111/tpj.12258</Citation>
</Reference>
<Reference>
<Citation>Kottapalli, J., David-Schwartz, R., Khamaisi, B., Brandsma, D., Lugassi, N., Egbaria, A., … Granot, D. (2018). Sucrose-induced stomatal closure is conserved across evolution. PLoS ONE, 13(10), e0205359. https://doi.org/10.1371/journal.pone.0205359</Citation>
</Reference>
<Reference>
<Citation>Lager, I., Andreasson, O., Dunbar, T. L., Andreasson, E., Escobar, M. A., & Rasmusson, A. G. (2010). Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. Plant, Cell and Environment, 33(9), 1513-1528.</Citation>
</Reference>
<Reference>
<Citation>Langer, K., Levchenko, V., Fromm, J., Geiger, D., Steinmeyer, R., Lautner, S., … Hedrich, R. (2004). The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development. The Plant Journal, 37(6), 828-838. https://doi.org/10.1111/j.0960-7412.2003.02008.x</Citation>
</Reference>
<Reference>
<Citation>Leonhardt, N., Kwak, J. M., Robert, N., Waner, D., Leonhardt, G., & Schroeder, J. I. (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell, 16(3), 596-615. https://doi.org/10.1105/tpc.019000</Citation>
</Reference>
<Reference>
<Citation>Lopez, D., Venisse, J. S., Fumanal, B., Chaumont, F., Guillot, E., Daniels, M. J., … Gousset-Dupont, A. (2013). Aquaporins and leaf hydraulics: poplar sheds new light. Plant and Cell Physiology, 54(12), 1963-1975. https://doi.org/10.1093/pcp/pct135</Citation>
</Reference>
<Reference>
<Citation>Lopez, M., Bousser, A. S., Sissoeff, I., Gaspar, M., Lachaise, B., Hoarau, J., & Mahe, A. (2003). Diurnal regulation of water transport and aquaporin gene expression in maize roots: Contribution of PIP2 proteins. Plant and Cell Physiology, 44(12), 1384-1395. https://doi.org/10.1093/pcp/pcg168</Citation>
</Reference>
<Reference>
<Citation>Lu, Z., Quiñones, M. A., & Zeiger, E. (1993). Abaxial and adaxial stomata from Pima cotton (Gossypium barbadense L.) differ in their pigment content and sensitivity to light quality. Plant, Cell & Environment, 16(7), 851-858. https://doi.org/10.1111/j.1365-3040.1993.tb00507.x</Citation>
</Reference>
<Reference>
<Citation>Lv, S., Zhang, Y., Li, C., Liu, Z., Yang, N., Pan, L., … Wang, G. (2018). Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytologist, 217(1), 290-304. https://doi.org/10.1111/nph.14813</Citation>
</Reference>
<Reference>
<Citation>Ma, Y., & Niu, J. (2017). The role of phytosphingosine-1-phosphate (Phyto-S1P) and its relationships with cytosolic pH and hydrogen peroxide (H2O2) during stomatal closure by darkness in broad bean. South African Journal of Botany, 108, 237-242. https://doi.org/10.1016/j.sajb.2016.11.002</Citation>
</Reference>
<Reference>
<Citation>Marron, N., Dreyer, E., Boudouresque, E., Delay, D., Petit, J. M., Delmotte, F. M., & Brignolas, F. (2003). Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones, ‘Dorskamp’ and ‘Luisa_Avanzo’. Tree Physiology, 23(18), 1225-1235. https://doi.org/10.1093/treephys/23.18.1225</Citation>
</Reference>
<Reference>
<Citation>Maurel, C., Verdoucq, L., & Rodrigues, O. (2016). Aquaporins and plant transpiration. Plant, Cell and Environment, 39(11), 2580-2587. https://doi.org/10.1111/pce.12814</Citation>
</Reference>
<Reference>
<Citation>Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., … Kollist, H. (2013). PYR/RCAR receptors contribute to ozone, reduced air humidity, darkness, and CO2-induced stomatal regulation. Plant Physiology, 162(3), 1652-1668. https://doi.org/10.1104/pp.113.220608</Citation>
</Reference>
<Reference>
<Citation>Merilo, E., Yarmolinsky, D., Jalakas, P., Parik, H., Tulva, I., Rasulov, B., … Kollist, H. (2018). Stomatal VPD response: There is more to the story than ABA. Plant Physiology, 176(1), 851-864. https://doi.org/10.1104/pp.17.00912</Citation>
</Reference>
<Reference>
<Citation>Mestdagh, P., Van Vlierberghe, P., De Weer, A., Muth, D., Westermann, F., Speleman, F., & Vandesompele, J. (2009). A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology, 10(6), 10.</Citation>
</Reference>
<Reference>
<Citation>Monclus, R., Dreyer, E., Villar, M., Delmotte, F. M., Delay, D., Petit, J. M., … Brignolas, F. (2006). Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytologist, 169(4), 765-777. https://doi.org/10.1111/j.1469-8137.2005.01630.x</Citation>
</Reference>
<Reference>
<Citation>Mott, K. A. (2007). Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves. Plant, Cell and Environment, 30(11), 1444-1449. https://doi.org/10.1111/j.1365-3040.2007.01720.x</Citation>
</Reference>
<Reference>
<Citation>Mott, K. A., Cardon, Z. G., & Berry, J. A. (1993). Asymmetric patchy stomatal closure for the 2 surfaces of Xanthium strumarium leaves at low humidity. Plant, Cell and Environment, 16(1), 25-34. https://doi.org/10.1111/j.1365-3040.1993.tb00841.x</Citation>
</Reference>
<Reference>
<Citation>Muller, E., & Lambs, L. (2009). Daily variations of water use with vapor pressure deficit in a plantation of I214 poplars. Water, 1(1), 32-42. https://doi.org/10.3390/w1010032</Citation>
</Reference>
<Reference>
<Citation>Nourbakhsh-Rey, M., & Libault, M. (2016). Decipher the molecular response of plant single cell types to environmental stresses. BioMed Research International, 2016, 1-8. https://doi.org/10.1155/2016/4182071</Citation>
</Reference>
<Reference>
<Citation>Novakova, M., Motyka, V., Dobrev, P. I., Malbeck, J., Gaudinova, A., & Vankova, R. (2005). Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves. Journal of Experimental Botany, 56(421), 2877-2883. https://doi.org/10.1093/jxb/eri282</Citation>
</Reference>
<Reference>
<Citation>Pallardy, S. G., & Kozlowski, T. T. (1979). Stomatal response of populus clones to light intensity and vapor pressure deficit. Plant Physiology, 64(1), 112-114. https://doi.org/10.1104/pp.64.1.112</Citation>
</Reference>
<Reference>
<Citation>Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., … Cutler, S. R. (2009). Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins. Science (New York, N.Y.), 324(5930), 1068-1071.</Citation>
</Reference>
<Reference>
<Citation>Possen, B. J. H. M., Oksanen, E., Rousi, M., Ruhanen, H., Ahonen, V., Tervahauta, A., … Vapaavuori, E. (2011). Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. Forest Ecology and Management, 262(8), 1387-1399. https://doi.org/10.1016/j.foreco.2011.06.035</Citation>
</Reference>
<Reference>
<Citation>Pouchou, J.-L., & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In K. F. J. Heinrich, & D. E. Newbury (Eds.), Electron Probe Quantitation (pp. 31-75). Boston, MA: Springer US.</Citation>
</Reference>
<Reference>
<Citation>Raschke, K., & Schnabl, H. (1978). Availability of chloride affects balance between potassium-chloride and potassium malate in guard cells of Vicia faba L. Plant Physiology, 62(1), 84-87. https://doi.org/10.1104/pp.62.1.84</Citation>
</Reference>
<Reference>
<Citation>Richardson, F., Brodribb, T. J., & Jordan, G. J. (2017). Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiology, 37(7), 869-878. https://doi.org/10.1093/treephys/tpx073</Citation>
</Reference>
<Reference>
<Citation>Rodriguez-Dominguez, C. M., Buckley, T. N., Egea, G., de Cires, A., Hernandez-Santana, V., Martorell, S., & Diaz-Espejo, A. (2016). Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. Plant, Cell and Environment, 39(9), 2014-2026. https://doi.org/10.1111/pce.12774</Citation>
</Reference>
<Reference>
<Citation>Santelia, D., & Lawson, T. (2016). Rethinking guard cell metabolism. Plant Physiology, 172(3), 1371-1392.</Citation>
</Reference>
<Reference>
<Citation>Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., … Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 424, 439-448. https://doi.org/10.1042/BJ20091221</Citation>
</Reference>
<Reference>
<Citation>Schroeder, J. I., & Hagiwara, S. (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature, 338, 427-430. https://doi.org/10.1038/338427a0</Citation>
</Reference>
<Reference>
<Citation>Schroeder, J. I., & Hedrich, R. (1989). Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends in Biochemical Sciences, 14(5), 187-192. https://doi.org/10.1016/0968-0004(89)90272-7</Citation>
</Reference>
<Reference>
<Citation>Schroeder, J. I., Raschke, K., & Neher, E. (1987). Voltage dependence of K+ channels in guard-cell protoplasts. Proceedings of the National Academy of Sciences, 84(12), 4108-4112. https://doi.org/10.1073/pnas.84.12.4108</Citation>
</Reference>
<Reference>
<Citation>Seung, D., Risopatron, J. P. M., Jones, B. J., & Marc, J. (2012). Circadian clock-dependent gating in ABA signalling networks. Protoplasma, 249(3), 445-457. https://doi.org/10.1007/s00709-011-0304-3</Citation>
</Reference>
<Reference>
<Citation>Sheriff, D. W. (1979). Water-vapor and heat-transfer in leaves. Annals of Botany, 43(2), 157-171. https://doi.org/10.1093/oxfordjournals.aob.a085620</Citation>
</Reference>
<Reference>
<Citation>Shimazaki, K.-i., Doi, M., Assmann, S. M., & Kinoshita, T. (2007). Light regulation of stomatal movement. Annual Review of Plant Biology, 58, 219-247.</Citation>
</Reference>
<Reference>
<Citation>Sommer, A., Geist, B., Da Ines, O., Gehwolf, R., Schäffner, A. R., & Obermeyer, G. (2008). Ectopic expression of Arabidopsis thaliana plasma membrane intrinsic protein 2 aquaporins in lily pollen increases the plasma membrane water permeability of grain but not of tube protoplasts. New Phytologist, 180(4), 787-797. https://doi.org/10.1111/j.1469-8137.2008.02607.x</Citation>
</Reference>
<Reference>
<Citation>Sperry, J. S., Hacke, U. G., Oren, R., & Comstock, J. P. (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25(2), 251-263. https://doi.org/10.1046/j.0016-8025.2001.00799.x</Citation>
</Reference>
<Reference>
<Citation>Talbott, L. D., & Zeiger, E. (1996). Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiology, 111(4), 1051-1057. https://doi.org/10.1104/pp.111.4.1051</Citation>
</Reference>
<Reference>
<Citation>Tardieu, F., & Simonneau, T. (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 49, 419-432. https://doi.org/10.1093/jxb/49.Special_Issue.419</Citation>
</Reference>
<Reference>
<Citation>Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C., & Diffenbaugh, N. S. (2015). A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526, 196-207. https://doi.org/10.1016/j.jhydrol.2014.12.011</Citation>
</Reference>
<Reference>
<Citation>Tschaplinski, T. J., & Blake, T. J. (1989). Water relations, photosynthetic capacity, and root shoot partitioning of photosynthates as determinants of productivity in hybrid poplar. Canadian Journal of Botany-Revue Canadienne De Botanique, 67(6), 1689-1697.</Citation>
</Reference>
<Reference>
<Citation>Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., … Rokhsar, D. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science, 313(5793), 1596-1604. https://doi.org/10.1126/science.1128691</Citation>
</Reference>
<Reference>
<Citation>Urban, J., Ingwers, M., McGuire, M. A., & Teskey, R. O. (2017). Stomatal conductance increases with rising temperature. Plant Signaling & Behavior, 12(8), 3.</Citation>
</Reference>
<Reference>
<Citation>Vandeleur, R. K., Mayo, G., Shelden, M. C., Gilliham, M., Kaiser, B. N., & Tyerman, S. D. (2009). The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, 149(1), 445-460. https://doi.org/10.1104/pp.108.128645</Citation>
</Reference>
<Reference>
<Citation>Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), research0034.1. https://doi.org/10.1186/gb-2002-3-7-research0034</Citation>
</Reference>
<Reference>
<Citation>Viger, M., Smith, H. K., Cohen, D., Dewoody, J., Trewin, H., Steenackers, M., … Taylor, G. (2016). Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.). Tree Physiology, 36(7), 909-928. https://doi.org/10.1093/treephys/tpw017</Citation>
</Reference>
<Reference>
<Citation>Wang, X.-Q., Wu, W.-H., & Assmann, S. M. (1998). Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium. Plant Physiology, 118(4), 1421-1429. https://doi.org/10.1104/pp.118.4.1421</Citation>
</Reference>
<Reference>
<Citation>Wilkins, O., Waldron, L., Nahal, H., Provart, N. J., & Campbell, M. M. (2009). Genotype and time of day shape the Populus drought response. Plant Journal, 60(4), 703-715. https://doi.org/10.1111/j.1365-313X.2009.03993.x</Citation>
</Reference>
<Reference>
<Citation>Yakir, E., Hassidim, M., Melamed-Book, N., Hilman, D., Kron, I., & Green, R. M. (2011). Cell autonomous and cell-type specific circadian rhythms in Arabidopsis. Plant Journal, 68(3), 520-531. https://doi.org/10.1111/j.1365-313X.2011.04707.x</Citation>
</Reference>
<Reference>
<Citation>Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., & Shinozaki, K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. Journal of Biological Chemistry, 281(8), 5310-5318. https://doi.org/10.1074/jbc.M509820200</Citation>
</Reference>
<Reference>
<Citation>Zhang, X., Dong, F. C., Gao, J. F., & Song, C. P. (2001). Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Research, 11(1), 37-43. https://doi.org/10.1038/sj.cr.7290064</Citation>
</Reference>
<Reference>
<Citation>Zhang, X. L., Jiang, L., Xin, Q., Liu, Y., Tan, J. X., & Chen, Z. Z. (2015). Structural basis and functions of abscisic acid receptors PYLs. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00088</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>République tchèque</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Champenoux</li>
</settlement>
<orgName>
<li>Université de Lorraine</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Durand, Maxime" sort="Durand, Maxime" uniqKey="Durand M" first="Maxime" last="Durand">Maxime Durand</name>
</region>
<name sortKey="Aubry, Nathalie" sort="Aubry, Nathalie" uniqKey="Aubry N" first="Nathalie" last="Aubry">Nathalie Aubry</name>
<name sortKey="Brendel, Oliver" sort="Brendel, Oliver" uniqKey="Brendel O" first="Oliver" last="Brendel">Oliver Brendel</name>
<name sortKey="Bure, Cyril" sort="Bure, Cyril" uniqKey="Bure C" first="Cyril" last="Buré">Cyril Buré</name>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
<name sortKey="Hummel, Irene" sort="Hummel, Irene" uniqKey="Hummel I" first="Irène" last="Hummel">Irène Hummel</name>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
</country>
<country name="République tchèque">
<noRegion>
<name sortKey="Tomaskova, Ivana" sort="Tomaskova, Ivana" uniqKey="Tomaskova I" first="Ivana" last="Tomášková">Ivana Tomášková</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000435 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000435 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31423592
   |texte=   Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31423592" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020